Results for Point Group Td



Characters of representations for molecular motions
Motion E 8C3 3C2 6S4 d
Cartesian 3N 15 0 -1 -1 3
Translation (x,y,z) 3 0 -1 -1 1
Rotation (Rx,Ry,Rz) 3 0 -1 1 -1
Vibration 9 0 1 -1 3


Decomposition to irreducible representations
Motion A1 A2 E T1 T2 Total
Cartesian 3N 1 0 1 1 3 6
Translation (x,y,z) 0 0 0 0 1 1
Rotation (Rx,Ry,Rz) 0 0 0 1 0 1
Vibration 1 0 1 0 2 4



Molecular parameter
Number of Atoms (N) 5
Number of internal coordinates 9
Number of independant internal coordinates 1
Number of vibrational modes 4


Force field analysis


Allowed / forbidden vibronational transitions
Operator A1 A2 E T1 T2 Total
Linear (IR) 1 0 1 0 2 2 / 2
Quadratic (Raman) 1 0 1 0 2 4 / 0
IR + Raman - - - - 0 - - - - 0 2 2 / 0


Characters of force fields
(Symmetric powers of vibration representation)
Force field E 8C3 3C2 6S4 d
linear 9 0 1 -1 3
quadratic 45 0 5 1 9
cubic 165 3 5 -1 19
quartic 495 0 15 3 39
quintic 1.287 0 15 -3 69
sextic 3.003 6 35 3 119


Decomposition to irreducible representations
Column with number of nonvanshing force constants highlighted
Force field A1 A2 E T1 T2
linear 1 0 1 0 2
quadratic 5 0 5 3 7
cubic 13 4 14 15 25
quartic 33 12 45 51 69
quintic 72 39 111 141 177
sextic 162 101 257 342 400


Further Reading



Contributions to nonvanishing force field constants


pos(X) : Position of irreducible representation (irrep) X in character table of Td

Subtotal: <Number of nonvanishing force constants in subsection> / <number of nonzero irrep combinations in subsection> / <number of irrep combinations in subsection>
Total: <Number of nonvanishing force constants in force field> / <number of nonzero irrep combinations in force field> / <number of irrep combinations in force field>


Contributions to nonvanishing quadratic force field constants
Irrep combinations (i,i) with indices: pos(A1) ≤ i ≤ pos(T2)
..1. A1A1...1. EE...3. T2T2.
Subtotal: 5 / 3 / 5
Irrep combinations (i,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(T2)
Subtotal: 0 / 0 / 10
Total: 5 / 3 / 15


Contributions to nonvanishing cubic force field constants
Irrep combinations (i,i,i) with indices: pos(A1) ≤ i ≤ pos(T2)
..1. A1A1A1...1. EEE...4. T2T2T2.
Subtotal: 6 / 3 / 5
Irrep combinations (i,i,j) (i,j,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(T2)
..1. A1EE...3. A1T2T2...3. ET2T2.
Subtotal: 7 / 3 / 20
Irrep combinations (i,j,k) with indices: pos(A1) ≤ i ≤ j ≤ k ≤ pos(T2)
Subtotal: 0 / 0 / 10
Total: 13 / 6 / 35


Contributions to nonvanishing quartic force field constants
Irrep combinations (i,i,i,i) with indices: pos(A1) ≤ i ≤ pos(T2)
..1. A1A1A1A1...1. EEEE...11. T2T2T2T2.
Subtotal: 13 / 3 / 5
Irrep combinations (i,i,i,j) (i,j,j,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(T2)
..1. A1EEE...4. A1T2T2T2...2. ET2T2T2.
Subtotal: 7 / 3 / 20
Irrep combinations (i,i,j,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(T2)
..1. A1A1EE...3. A1A1T2T2...6. EET2T2.
Subtotal: 10 / 3 / 10
Irrep combinations (i,i,j,k) (i,j,j,k) (i,j,k,k) with indices: pos(A1) ≤ i ≤ j ≤ k ≤ pos(T2)
..3. A1ET2T2.
Subtotal: 3 / 1 / 30
Irrep combinations (i,j,k,l) with indices: pos(A1) ≤ i ≤ j ≤ k ≤ l ≤ pos(T2)
Subtotal: 0 / 0 / 5
Total: 33 / 10 / 70


Calculate contributions to

A1 A2 E T1 T2
Show only nonzero contributions Show all contributions
Up to quartic force fieldUp to quintic force fieldUp to sextic force field






Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement